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Extraction of the normal component of the
particle velocity from marine pressure data

Lasse Amundsen*, Bruce G.  and  Arntsen*

ABSTRACT

We present a general wave theoretical method for
extracting the normal component of the particle veloc-
ity from marine pressure data. A possible use of the
normal component of the particle velocity and the
pressure is the separation of upgoing and downgoing
waves at the receivers. For one special acquisition
geometry, the source wavelet can also be estimated.
The method in principle is exact. No information
about the properties of the elastic earth is required.

When the pressure data are recorded on a single
surface, it is necessary to know the source signatures
if the source array location is above the receiver
surface. If the sources are located below, the signa-
tures need not be known. The locations of the individ-
ual receivers must be specified, and the reflecting
properties of the sea surface must be known. When the

receiver surface is plane and horizontal, the extraction
process can be performed in the frequency-horizontal
wavenumber domain.

The normal component of the particle velocity can
furthermore be extracted from pressure data recorded
at two surfaces at different depths. In this case the
reflectivity of the sea surface does not come into play;
it is only the medium properties between the two
receiver surfaces that enter the problem. The actual
depths of the receivers need not be known, only their
relative distances. If the sources are located above the
uppermost receiver surface, the source signatures can
also be estimated.

A simple synthetic data example demonstrates the
extraction of the normal component of the pressure
from the pressure field recorded along a dipping re-
ceiver line below a free surface.

In conventional marine seismicacquisitiononly thepres-

INTRODUCTION the
the

receiver array. Their algorithm, which is independent of
subsurface geology, requires that the receiver depths and

In this paper we take advantage of their result and show
medium above the receivers be known.

that from the pressure along an arbitrary surface, we can
extract its normal derivative when we know the source
wavelets. We also show that the source functions need not
be known when the sources are located below the receiver
surface. An assumption in the derivation is that the reflecting

sure wavefield is recorded. However, several seismic pro-

downgoing waves, and for certain acquisition geometries to
estimate the seismic source signatures. The two wavefields

cessing algorithms need information about the normal deriv-

are also the boundary conditions necessary for most two-
way acoustic wavefield extrapolation schemes.

ative of the pressure,

Weglein and Secrest (1990,1992) and Secrest and MacBain

or the normal component of the
particle velocity, to extract the optimum information about.
the subsurface from the data. The pressure and its normal
derivative can, for instance, be used to separate upgoing and

propertiesof the air/watersurfaceare known. A sketch of
these two configurations relatedto marine acquisitionis
shown in Figures la and lb.

Furthermore, we show how to extract the normal deriva-
tive of the pressure using pressure measurements at two
different depth levels (Figure lc). Such dual streamer data
have been used to separate upgoing and downgoing waves

 et al. (1986), and Monk (1990)]. This process is
independent of the reflectivity of the air/water surface.

(1992) have shown that the source wavelets, or the source
array radiation pattern, can be estimated from the pressure and
its normal derivative recorded in a marine environment along
an arbitrary surface when the sources are located above the

Manuscript received by the Editor June 22, 1993; revised manuscript received June 22, 1994.
*Statoil Research Centre, Postuttak, N-7005 Trondheim, Norway.

 Alliance, Postuttak, N-7005 Trondheim, Norway.
© 1995 Society of Exploration Geophysicists. All rights reserved.

212



Normal Component of Particle Velocity 213

Our method requires no information about the properties
of the subsurface. The relationship between the normal
derivative of the pressure and the pressure itself is derived
from an integral equation for the pressure by using Green’s
second identity. The normal component of the particle
velocity can readily be computed from the normal derivative
of the pressure.

In the case that the receiver surface(s) is (are) planer and
horizontal, the extraction process may be performed in the
frequency-horizontal wavenumber domain. The derived
equation for sources below a single streamer is consistent
with the equation given by Filho (1992) when the air/water
surface is free. Assuming cylindrical symmetry, our equa-
tions are consistent with the equations derived by Amundsen
(1993).

Rigsby et al. (1987) used the bottom-cable technique to
collect pressure data in a shallow water area. One possible
application of our proposed method may be to extract the
normal derivative of the pressure from such bottom-cable
pressure data. The normal derivative can then be used to
solve the problem of the receiver ghost reflection giving
multiple notches in the data spectrum. Of course, another

FIG. 1. Sketches of various configurations of sources and
receivers pertinent to the theoretical calculations. The stars
represent sources, and the bullets represent receivers. To
extract the normal derivative of the pressure for configura-
tion (a), the source functions must be known. Configuration
(b), however, does not need source function information. In
configuration (c), the normal derivative of the pressure is
extracted from dual streamer data.

solution to the notch problem is to record the normal
component of the particle velocity. This solution was intro-
duced by Barr and Sanders (1989). When such dual-sensor
data are acquired, our method could be used to verify the
consistency between the pressure and velocity detector
data.

In the following section we present the theory underlying
our extraction scheme. We then consider the situation with
one receiver surface and give special attention to the loca-
tion of the sources. Next, the situation of two independent
measurements of the pressure is treated. Finally, a numeri-
cal example is given.

THEORY

In the frequency-space domain the constant-density
acoustic wave equation for the pressure field P caused by a
sequence of m localized point sources at spatial positions 
reads

J

where  is the Laplacian,  is the circular frequency, c is
the propagation velocity, r is a shorthand notation for the
Cartesian coordinates,  is the Fourier transform of the
source time function for the source at position  and 
represents a 3-D spatial Dirac delta function. The  is
recorded in a marine environment at receiver coordinates 
along a surface  below the air/water surface  of the
earth. Fornotational conveniencein the followingequations
we drop the dependence of the fields on the source points

    
 characterize the velocity c(r) in terms of a reference

value  and a variation in the index of refraction 

1 
     
 

and define the causal Green’s function  in the reference
medium by

        

where =  Substituting equation (2) into (1) we may
write

      

    

Using Green’s second identity

dr    =   [BVC  

where B and C are two twice differentiablescalar fields in a
volume  bounded by a closed surface S with outward
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pointing normal vector  an integral equation for P can be
derived. Setting B = P and C =  we get

       

      

    

where V’ operates on the r’ coordinates. Using equations (3)
and (4) in equation  i.e.,

         

       

    

we find the general equation

        

         

      

    

We have not yet specified the volume  enclosed by S. In
the following we will use two different geometries to extract
the normal derivative of the pressure, first from single
streamer pressure data and then from dual streamer pressure
data.

The normal component of the particle velocity  follows
from the equation of motion as

 

where  is the density.

SINGLE STREAMER DATA

Consider the geometry drawn in Figure 2. Let the closed
surface S be composed of the recording surface  and a
hemispherical cap  of radius  =  that is, S =  +

 . The air/water surface  is inside V, and above 
Letting R go to infinity, S approaches an infinite hemi-
spherical shell, and its contribution to the surface integral in
equation (9) becomes zero because of the Sommerfeld radi-
ation condition (Sommerfeld, 1954). The field   fulfills
the radiation condition on  since

          

uniformly for all directions =  We demand that the
reference medium agrees with the actual medium above the
receiver surface S,, so that the reference medium contains
the air/water surface. Hence, the reference medium consists
of two homogeneous halfspaces: one with air and one with
water. The Green’s function G propagating in the spatially
variant reference medium, takes into account the reflectivity
properties of the air/water surface  When the air/water
surface is free, the Green’s function is zero on  In
Appendix A we give the frequency-wavenumber expansion
of the Green’s function when  is horizontal.

Now, choosing the source point r of the Green’s function
below  the first term in the volume integral in equation (9)
vanishes. Since  has no support inside V, the third term in
the volume integral is also zero. Setting r’ =  in the
remaining surface integral, equation (9) becomes

     

      

    

where  operates on the  coordinates.
Equation (12) constitutes a functional relationship be-

tween the pressure field and its normal derivative on  i.e.,
the fields cannot be prescribed independently. The influence
of possible sources below S,, as well as the properties of the
medium outside S, are implicitly expressed in terms of the
fields P and  l V,.P on  In the following subsections we
will use this functional relationship to extract the normal
derivative of the pressure on  when the pressure field is
known.

FIG. 2. Model geometry for single streamer data: S =  +
 where  is the receiver surface.  is the air/water

surface. The source point r of the Green’s function and the
scattering region  located below S,. In the text,
source locationsare considered: either aboveor belowS
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Sources above the receiver surface

We let the sources be above the receiver surface  inside
the volume under consideration. Then equation (12) be-
comes

Equation (13) has been used by Weglein and Secrest (1990,
1992) for wavelet estimation. Equation (13) can, however, be
rearranged into a Fredholm integral equation of the first kind
for the normal derivative of the pressure,

where the right-hand side contains only known fields if the
source wavelets are known. Note that the Green’s functions
in principle can be evaluated with any source point r located
below the receiver surface. The reader is referred to Tricomi
(1957) or Antia (1991) for a discussion of numerical solution
techniques (such as quadrature or expansion methods) for
Fredholm integral equations of the first kind. Such integral
equations are, in general, ill-conditioned and their accurate
solution may be difficult to obtain. In quadrature schemes,
the integral is approximated by a quadrature formula, and
the resulting system of algebraic equations is solved. In
expansion methods, the solution is approximated by an
expansion in terms of some convenient basis functions. The
coefficients of expansion may be determined by minimizing
some error norm.

For most marine acquisition geometries, however, we
may assume that the receiver surface is plane and horizontal.
The integral equation (14) then can be transformed to the
wavenumber domain where it is easier to handle. This
solution technique is discussed below.

Also note that the locations of the sources and the
individual receivers must be known to solve equation (14).

Sources below the receiver surface

When the sources are located below therecording
equation (12) gives the following integralequation

surface,

for the normal derivative of the pressure. Note that in this
case the source wavelets  need not be known to extract
the normal derivative of the pressure. The locations of the
individual receivers must, however, be specified.

Wavenumber domain extraction of Vz

For simplicity, in the rest of this section we will assume
that the air/water surface  is plane and horizontal, with
vanishing pressure, implying that the reflection coefficient is
- 1. In the case that the receiver array is also plane and
horizontal, equations (14) and (15) can be transformed to the
horizontal wavenumber domain for finding the vertical com-
ponent of the particle velocity, VZ. In Appendix A [see
equation (A-lo)],we show that the 3-D version of equation
(14), which is valid when the source locations  =   y,. ,

 j = 1, . . . ,
becomes

m, are above the receiver debth level 

where   and  are the two horizontal and vertical
wavenumbers, respectively.

When the source depths  j = 1, . . . , m, are below the
receiver depth level equation (15) gives the following
relation

between VZ and P. No knowledge of the source wavelets is
required.

In Appendix A we also interpret equations (16) and (17) in
terms of ghost operators and direct and reflected parts of the
pressure.

Equations (16) and (17) have been derived by Amundsen
(1993) assuming cylindrical symmetry. Equation (17) has
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earlier been derived by Filho (1992) who introduced differ-
ential equations for upgoing and downgoing waves. Filho
(1992) also demonstrated the applicability of the extraction
method both on synthetic and real data.

Finally, note that the wavenumber domain extraction
algorithms for  are independent of the source point r of
the Green’s function which enters equations (14) and (15).

DUAL STREAMER DATA

In this section, we show how to obtain the normal deriv-
ative of the pressure by measuring the pressure field at two
depths. We assume that neither the sources nor any of the
scattering body is located between two receiver surfaces 
and  of infinite extension. Letting  be above  and
bringing the source point r of the Green’s function below 
(Figure  equation (9) becomes

 

    (18)

       

     

Equation (18) constitutes a functional relationship between
the pressure field and its normal derivative on S =  + 

We now demonstrate how to find the normal derivative of
the pressure at the lowermost receiver surface  To
eliminate the unknown contribution from the normal deriv-
ative of the pressure at the receiver surface S  we choose
the Green’s function  zero on this surface. Equation (18)
then becomes an integral equation for the normal derivative
of the pressure at the receiver surface 

FIG. 3. Model geometry for dual streamer data: S =  +
 where  and  are the receiver surfaces.  is the

air/water surface. The source Point r of the Green’s function
and the scattering region a r e located below . The
sources are assumed to be located either above or below

      

      

        

The right-hand side contains only known fields. In the
derivation of equation (19) we have not made any assump-
tion on the air/water surface. This equation is therefore
independent of the properties of the reflecting sea surface.

An equation for the normal derivative of the pressure at
the receiver surface S  can be derived from equation (18) by
choosing the Green’s function zero on S2. It then is conve-
nient to locate the source point r of the Green’s function
above S1.

Note that the measured pressure and the extracted normal
derivative of the pressure from dual streamer data can be
used to estimate the source signatures by the method of
Weglein and Secrest (1990) when the source array is located
above the dual receiver array.

Wavenumberdomainextraction of 

For practical purposes, the receiver arrays would be
assumed to be horizontal. For this case equation (19) can be
transformed to the horizontal wavenumber domain for find-
ing VZ. In Appendix B [see equation (B-6)], we show that the
equation in 3-D becomes

      

       

     

where      0 is the relative distance between the
receiver arrays. Note that the actual streamer depths  and

 need not necessarily be known; it is the relative distance
 that enters equation (20). This equation has earlier

implicitly been used by Sonneland et al. (1986) and Amund-
sen (1993) to find the upgoing waves from dual streamer
pressure data. The equation for the upgoing wave compo-
nents is given in Appendix B, equation (B-8).

Finally, note that the wavenumber domain extraction
algorithm for  is independent of the source point r of the
Green’s function which enters equation (19).

NUMERICAL EXAMPLE

In the numerical experiment we use a 2-D synthetic data
set to test and investigate the performance of the spatial
filtering process described by the Fredholm integral equation
(14) of first kind for one source (m = 1) located above a
dipping receiver line. In Appendix C we approximate the
integral by a simple quadrature formula. The discretized
version of the integral equation is given in Appendix C,
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equation (C-4). The corresponding matrix equation of the
form  = g is defined in equation (C-5).

We choose a very simple model, a homogeneous medium
bounded by a free surface. In this case the normal derivative
of the pressure can be calculated from analytical expressions
in the frequency domain; thus, we have the possibility of
checking the extracted normal derivative with the true
normal derivative.

The source is located at the horizontal coordinate xs = 0
m at a depth zs = 5 m (Figure 4). Its frequency content is
approximately 60 Hz. The receiver line has a quite large dip
angle,  = 30 degrees, relative to the free surface. The
number of receivers is Nr = 201, with the first receiver at
position (-433 m, 25 m) and the last receiver at position
(433 m, 525 m). The receiver spacing along the recording line
is 5 m. The recording time is .5 s with a time sampling
interval of 8 ms. The evaluation source points r of the
Green’s functions are chosen to follow a line parallel to the
receiver line, located 2.5 m below. The number of evaluation
points in the example is Nc = Nr, which means that we
have an even-determined problem.

The reference data (modeled pressure data) in the numer-
ical experiment are shown in Figure 5a This pressure record
is transformed to the frequency domain, and processed by
the algorithm developed on the basis of equation (C-4). The
building block of the process is a subroutine that solves a
complex system of linear equations. The output of the
process is the extracted normal derivative of the reference
pressure recording; this data set is displayed in Figure 5b. To
validate the extraction process, we have modeled the normal
derivative of the pressure, shown in Figure 5c, from analyt-
ical expressions. Figure 5d shows the difference of the
modeled and the extracted normal pressure derivative. The
difference is very small, showing that the extraction process
has worked satisfactorily.

We have, however, observed numerical instabilities of the
extraction process for some choices of the evaluation points
r =   Choosing the depth coordinates  too far from the
receiver line turns out to give an inaccurate solution with
numerical artifacts. This inaccuracy is related to several

FIG. 4. Model geometry in numerical example. The star (*)
denotes the source position. The solid line with dip angle 
= 30 degrees represents the receiver line where the solid
dots  denote receiver positions. The source points of the
Green’s function are located along the dashed line with
triangle symbols 

eigenvalues with very small magnitudes in the matrix 
leading to an ill-conditioned system of equations. It is well
known that quadrature methods are not well suited for
solving Fredholm equations of the first kind. Several syn-
thetic data tests have, however, shown that the extraction
algorithm outlined in Appendix C gives acceptable results
when the source points of the Green’s function are chosen
relatively close to the pressure receiver points. Prudent
choices are found to be in the range from 2-25 m.

FIG. 5. (a Reference pressure data. (b) Extracted normal
pressure derivative. (c) Modeled normal pressure derivative.
(d) Difference between modeled and extracted normal pres-
sure derivative.
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CONCLUSIONS

We have derived a general wave theoretical method for
extracting the normal component of the particle velocity
from marine pressure data.

When the pressure data are recorded on a single surface,
the source signatures must be known if the source array
location is above the receiver surface. If the sources are
located below, the signatures need not be known. The
reflecting properties of the sea surface, the source array
depth, and the depths of the individual receivers must be
known.

When the pressure data are recorded at two surfaces at
different depths, only the medium properties between the
two receiver surfaces enter the problem. The true depths of
the receivers need not be known, only their relative dis-
tances. If the sources are located above the uppermost
receiver surface, the source signatures can be estimated.

When the receiver surface(s) is (are) plane and horizontal,
the extraction process can be performed in the frequency-
horizontal wavenumber domain.

The synthetic data example showed that the normal deriv-
ative of the pressure could be extracted by solving an
even-determined set of equations. The extraction algorithm
in the space domain is, however, sensitive to the choice of
the evaluation source points of the Green’s functions. In the
wavenumber domain the extraction algorithms are indepen-
dent of these spatial evaluation points.
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APPENDIX A

WAVENUMBER DOMAIN EXTRACTION OF Vz FROM SINGLE STREAMER PRESSURE DATA

We define the 2-D spatial Fourier transform as

   
 

  

     

with inverse

       

where  and  are the horizontal wavenumbers corre-
sponding to the spatial coordinates  and 

In this Appendix we derive the 3-D wavenumber version
of the integral equations (14) and (15) for the vertical
component of the particle velocity,  The pressure is
recorded on a horizontal receiver surface at  located

below the horizontal air/water surface at depth  = 0. We
assume that the air/water surface is a free surface with
vanishing pressure, which implies a reflection coefficient of

 We set  =  y,.,   =     =
   and let the depth axis be positive downwards with

      0. The 3-D Green’s function  of the
reference medium consisting of a water halfspace below the
free surface then has the wavenumber expansion (Morse and
Feshbach, 1953; Weglein and Secrest, 1990)

    +  

         + 
X
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with normal derivative

Transforming the pressure field and its normal derivative to
the wavenumber domain using equation (A-l) and gathering
common factors, we find

Note that this equation is independent of the evaluation
source point (x, y,  of the Green’s function.

Solving equation (A-8) for the vertical derivative, and 
furthermore for the vertical component of the particle veloc-
ity,
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Equation (A-14) demonstrates that the pressure receiver
ghost operator must be filtered from the reflected part of the
pressure,     before the conversion to the
vertical particle velocity component. The direct waves con-
tain source ghosts only, and therefore are transformed by
multiplication with the factor  The source signatures
must of course be known to compute 

Sources below the receiver surface

Here, G +  and G   are receiver ghost operators that
would be experienced by geophones andhydrophones,
respectively, and G   is a source ghost operator. The
total pressure P is the sum of the direct part  and the
reflected (scattered) part 
(A-13) thus can be written

that is,    +  Equation

In this case    (j = 1, . . . , m). Equation (15) gives
the following relation’

between  and P. In terms of receiver ghost operators
equation (A-15) reads

In this case both the reflected part of the pressure and the
direct wave contain a receiver ghost, which gives the simpler
extraction equation (A-16) as compared to equation (A-14).

APPENDIX B

WAVENUMBER DOMAIN EXTRACTION OF  FROM DUAL STREAMER PRESSURE DATA

In this Appendix we derive the 3-D wavenumber version
of the integral equation (19) for the vertical component of the
particle velocity. The depth axis is positive downwards, and
the pressure is recorded at two horizontal receiver surfaces
at depths and  with      Using  =

 and n  =  equation (19) becomes

In this case the 3-D Green’s function  which is chosen
zero at the uppermost recording level  has the wavenum-
ber expansion
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where the index a = 1, 2, and  =    Inserting the Note that this equation is independent of the source point
expansions for the Green’s functions into equation (B-l),    of the Green’s function.
and Fourier transforming the pressure and its derivative to By use of equation (10) the vertical component of the
the wavenumber domain, equation (B-l) becomes particle velocity becomes

Equating integrands, multiplying by exp  and intro-
ducing  =    we obtain

Equation (B-6) may for instance be used to find the
upgoing wavefield at the lower surface. Using

1
   

it immediately follows

(B-7)

This equation has earlier been derived by  et al.
(1986) and reviewed by Amundsen (1993).

APPENDIX C

DISCRETIZATION OF INTEGRAL EQUATION (14)

We here consider integral equation (14) in the 2-D case for
one source (m = 1) with r =    =   and 
=  The depth axis is positive downward. Assume
that the receivers are not necessarily flat, but follow the
curve C:  = x,(s), = z,(s), where  is the distance
along C (see Figure C-l). The normal vector has the com-
ponents

        

FIG. C-l. The receivers are not necessarily flat, but follow
the curve C:  = x,(s), = z,(s), where  is the distance
along the curve. The normal vector at the point  =  
has the components n = (-sin  cos  = 

 where  be the local dip of the line.

where  is the local dip angle of the receiver line at the point
  Substituting equation (C-l) into equation (14) we

find

I

 
   =  1    

   
   

 

The simplest technique for solving an integral equation
numerically is by the quadrature method. The use of equi-
distant abscissas and unity weights in the quadrature formula
correspond to replacing the integrals with sums over the
horizontal receiver coordinates, hence,
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+

 

where  is the number of receivers,  =   and
As is the receiver spacing. We can now solve for  by
evaluating the Green’s functions at  points  =  
where   using a least-squares method. Equation
(C-3) then becomes For the 2-D case the Green’s function  being zero at

the free surface, is

. .

              

For a receiver line with constant dip angle  we have
       

The discretized equation (C-4) can conveniently be written
as a matrix equation

where  is a matrix with kernel elements

(C-6)

where  is the Hankel function of the first kind, order
zero, and

        

and f is the unknown vector containing the normal derivative
elements

which are to be determined, and g is a known vector with
elements

The partial derivatives of  becomes

where we have used   
Note that the Green’s functions are only a function of the

relative horizontal distances. When the receiver surface is
plane and horizontal           and 
is a Toeplitz matrix.


